- IRON
l

How to create
PDF files in VB .NET
PDF Generator

0g VvB.NETPDF

Module Modulel
Sub Main()

Dim renderer IronPd

Dim document = renderer.R
First PDF in \ D)
document.SaveAs(
End Sub
End Module

o

PDF
|

IRON

VB.NET
PDF Generator

9Y

Interact with the tutorial: https:/ironpdf.com/tutorials/vb-net-pdf/

Share the tutorial; QO iny

This tutorial will guide you step-by-step how to create and edit PDF files in VB.Net. This technigue is

equally valid for use in ASP.NET web apps as well as console applications, Windows Services , and

desktop programs. We will use VB.NET to create PDF projects targeting NET Framework 4 or .NET

Core 2. All you need is a Visual Basic .NET development environment, such as Microsoft Visual Studio

Community.

Table of Contents

I BN

Download the VB .NET PDF Library FREE from IronPDF
Create A PDF with VB.NET

Apply Styling to VB.Net PDF

Create PDF w/ Dynamic Content : 2 Methods

Edit PDF Files with VB.Net

More .NET PDF Tutorials

mailto:?&subject=VB NET PDF Generator Tutorial&body=A tutorial on How to Create and Edit PDFs in VB NET https://ironpdf.com/tutorials/vb-net-pdf/
https://www.facebook.com/sharer.php?u=https://ironpdf.com/tutorials/vb-net-pdf/
https://twitter.com/share?url=https://ironpdf.com/tutorials/vb-net-pdf/&text=Found a tutorial on How to Create and Edit PDFs in VB NET&via=ironsoftwaredev&hashtags=VB,VBNET,howto,IronPDF
https://www.linkedin.com/shareArticle?url=https://ironpdf.com/tutorials/vb-net-pdf/
https://reddit.com/submit?url=https://ironpdf.com/tutorials/vb-net-pdf/&title=Create and Edit PDFs in VB NET

VB .NET Codes for PDF Creating and Editing with
IronPDF

Render HTML to PDF with VB.NET, apply styling, utilize dynamic content, and edit your files easily. Creating
PDFs is straightforward and compatible with .NET Framework 4 or NET Core 2. And no need for proprietary

file formats or pulling different API's.

This tutorial provides the documentation to walk you through each task step-by-step, all using the free for
development lronPDF software favored by developers. VB.NET code examples are specific to your use cases
SO you can see the steps easily in a familiar environment. This VB dot NET PDF Library has comprehensive

creation and settings capabilities for every project, whether in ASP.NET applications, console, or desktop.

Included with IronPDF:

- Ticket support direct from our .NET PDF Library development team (real humans!)
« Works with HTML, ASPX forms, MVC views, images, and all the document formats you already use
» Microsoft Visual Studio installation gets you up and running fast

- Unlimited free development, and licenses to go live starting at $399

Step 1

1. Download the VB .NET PDF Library FREE from
IronPDF

or

Download DLL Install with NuGet
nuget.org/packages/IronPdf/

Install via NuGet

In Visual Studio, right click on your project solution explorer and select "Manage Nuget Packages...". From

there simply search for IronPDF and install the latest version... click ok to any dialog boxes that come up.

This will work in any C# .Net Framework project from Framework 4 and above, or .Net Core 2 and above. It

will also work just as well in VB.Net projects.

PM > Install-Package IronPdf

https:/www.nuget.org/packages/IlronPdf

https://ironpdf.com/
https://ironpdf.com/tutorials/html-to-pdf/#download-modal
https://www.nuget.org/packages/IronPdf

Install via DLL

Alternatively, the IronPDF DLL can be downloaded and manually installed to the project or GAC from

https:/ironpdf.com/packages/IronPdf.zip

Remember to add this statement to the top of any c¢s class file using IronPDF:

using IronPdf;

How to Tutorials

2. Create A PDF with VB.NET

Using Visual Basic ASP.Net to create a PDF file for the first time is surprising easy using lronPDF, as

compared to libraries with proprietary design API’s such as iTextSharp.

We can use HTML (with a pixel perfect rending engine based on Google Chromium) to define the content of

our PDF and simply render it to a file.

Here is our simplest code to create a PDF in VB.Net:

Module Modulel

Sub MainQ)
Dim renderer = New IronPdf.HtmlToPdf()

Dim document = renderer.RenderHtmlAsPdf("<hl> My First PDF in VB.Net</h1>")
document.SaveAs("MyFirst.pdf™)
End Sub

End Module

This will produce a .NET generated PDF file containing your exact text, albeit lacking some design at this

point.

We can improve upon this code by adding the header line Imports lronPdf. By adding the last line of code
System.Diagnostics.Process.Start, we open the PDF in the operating system'’s default PDF viewer to make

the project more meaningful.

Imports IronPdf

Module Modulel

Sub Main(Q)
Dim renderer = New HtmlToPdf()

Dim document = renderer.RenderHtmlAsPdf("<hl> My First PDF in VB.Net</h1>")
document.SaveAs("MyFirst.pdf™)
System.Diagnostics.Process.Start("MyFirst.pdf™)

End Sub

End Module

An alternative method would be to render any existing web page from a URL to a PDF by using the elegant
“RenderUrlAsPdf” method from IronPDF.

Imports IronPdf
Module Modulel

Sub Main(Q)
Dim renderer = New HtmlToPdf()

Dim document = renderer.RenderUrlAsPdf("https: ww.nuget.org/packages/IronPdf/™)
document.SaveAs("UrlToPdf.pdf™)
System.Diagnostics.Process.Start("UrlToPdf.pdf™)

End Sub

End Module

If you'd like to generate your PDF in PDF/A format, you'll need to render in IronPDF first, then use
Ghostscript to convert to PDF/A.

3. Apply Styling to VB.Net PDF

To style our PDF content in VB.Net, we can make full use of CSS, Javascript and images. We may link to local
assets, or even to remote or CDN based assets such as Google Fonts. We can even use DataURIs to embed

images and assets as a string into your HTML

For advanced design, we can use a 2 stage process:

1. First we develop and design our HTML perfectly. This task may involve in-house design staff, splitting

the work load.

2. Render that file as a PDF using VB.Net and our PDF Library

https://ironpdf.com/docs/questions/pdfa/
https://ironpdf.com/docs/questions/datauris/
https://ironpdf.com/docs/questions/datauris/

The VB.Net Code to render the HTML file as a PDF:

This method renders an HTML document as if it were opened as a file (file.// protocol).

Imports IronPdf
Module Modulel

Sub Main(Q)
Dim renderer = New HtmlToPdf()

renderer.PrintOptions.CssMediaType = PdfPrintOptions.PdfCssMediaType.Print
renderer.PrintOptions.PrintHtmlBackgrounds = False

renderer.PrintOptions.PaperOrientation = PdfPrintOptions.PdfPaperOrientation.Landscape

renderer.PrintOptions.RenderDelay = 150

Dim document = renderer.RenderHTMLFileAsPdf("C:\Users\jacob\Dropbox\Visual
Studio\Tutorials\VB.Net.Pdf.Tutorial\VB.Net.Pdf.Tutorial\slideshow\index.html™)
document.SaveAs("Html5.pdf™)
System.Diagnostics.Process.Start("Html5.pdf")
End Sub

End Module

We might also shorten that URL by adding a project relative file path such as:

Dim document = renderer.RenderHTMLFileAsPdf("..\..\slideshow\index.html™)

You can see that the Htm/ToPdf renderer has a PrintOptions object which we can use in this example to:

» Set the CSS media type to 'print’ so we see no screen-only CSS3 styles
* lgnore HTML backgrounds
* Set the PDF's virtual paper to Landscape orientation

* Add a small delay in rendering for the Javascript to finish processing

Our example HTML File uses Javascript, CSS3 and images. This HTML creates a dynamic, mobile-aware

slideshow and was found at https:/github.com/leemark/better-simple-slideshow

<html>
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<title>A simple DIY responsive slideshow made with HTML5, CSS3, and JavaScript</title>
<meta name="description" content="">

<meta name="viewport" content="width=device-width, initial-scale=1">

<link href="http://fonts.googleapis.com/css?family=0pen+Sans|Open+Sans+Condensed: 700"
rel="stylesheet' type='text/css'>

<link rel="stylesheet" href="demo/css/demostyles.css">
<link rel="stylesheet" href="css/simple-slideshow-styles.css">
</head>

<header>
<h1>A Better Simple Slideshow</hl>
<p>A simple DIY responsive JavaScript slideshow. [GitHub repo]</p>
</header>
<div class="bss-slides numl" tabindex="1" autofocus="autofocus">
<figure>
<figcaption>"Medium" by Thomas Hawk.</figcaption>
</figure>
<figure>
<figcaption>"Colorado" by Trey Ratcliff.</figcaption>
</figure>
<figure>
<figcaption>"Early Morning at
the Monte Vista Wildlife Refuge, Colorado" by Dave Soldano.</figcaption>
</figure>
<figure>
<figcaption>"Sunrise in Eastern
Colorado" by Pam
Morris.</figcaption>
</figure>
<figure>
<figcaption>"colorado
colors" by Jasen
Miller.</figcaption>
</figure>
</div>
<div class="content">
<h2>What is it?</h2>

<p>It's a fairly basic slideshow, written in javascript. This is a dual-purpose project, it's
meant to be something you can drop right into your page and use if you so choose, but it's also
meant as an example/tutorial script showing how to build a simple DIY slideshow from scratch on
your own. Here is a
tutorial/walkthrough.</p>

<hZ2>Features</h2>

fully responsive
option for auto-advancing slides, or manually advancing by user
multiple slideshows per-page
supports arrow-key navigation
full-screen toggle using HTML5 fullscreen api
swipe events supported on touch devices (requires hammer.js)</1i>
written in vanilla JS--this means no jQuery dependency (much ♥ for jQuery though!)</1i>

<h2>Getting Started</h2>

<p>HTML markup for the slideshow should look basically like this, with a container element
wrapping the whole thing (doesn't have to be a <div>) and each

slide is a ≪figure>.</p>

<script src="https://gist.github.com/leemark/83571d9f8f0e3ad853a8.js"></script> </1i>

Include the script: js/better-simple-slideshow.min.js or js/better-simple-slideshow.js</1i>

Include the stylesheet css/simple-slideshow-styles.css</1i>
Initialize the slideshow:

<script src="https://gist.github.com/leemark/479d4ecc4df38fba500c.js"></script>

</1i>

<h2>0ptions</h2>

To customize functionality, create an options object, then pass it into makeBSS() as the second argument, as seen below:

<script src="https://gist.github.com/leemark/c6e@f5c47acb7bf9bel6.js"></script>

<h2>Demo/Examples</h2>
<h3>Example #1 (slideshow at top of this page)</h3>
<p>HTML markup:</p>
<script src="https://gist.github.com/leemark/19bafdblabf8f6b4el47.js"></script>
<p>JavaScript code:</p>
<script src="https://gist.github.com/leemark/a09d2726b5bfc92ea68c.js"></script>

<h3>Example #2 (below)</h3>
<div class="bss-slides num2" tabindex="2">
<figure>
<img src="http://themarklee.com/wp-content/uploads/2013/12/snowying. jpg"
width="100%" /><figcaption>"Snowying" by fiddleoak.</figcaption>
</figure>
<figure>
<img src="http://themarklee.com/wp-content/uploads/2013/12/starlight.jpg"
width="100%" /><figcaption>"Starlight" by ChaoticMi
nd75.</figcaption>
</figure>
<figure>
<img src="http://themarklee.com/wp-content/uploads/2013/12/snowstorm.jpg"
width="100%" /><figcaption>"Snowstorm" by Beaulawrence.</figcaption>
</figure>
<figure>
<img
src="http://themarklee.com/wp-content/uploads/2013/12/misty-winter-afternoon. jpg" width="100%"
/><figcaption>"Misty winter afternoon" by Bert Kaufmann.</figcaption>
</figure>
<figure>
<img src="http://themarklee.com/wp-content/uploads/2013/12/good-morning.jpg"
width="100%" /><figcaption>"Good Morning!" by Frank
Wuestefeld.</figcaption>
</figure>

</div>

<p>HTML markup:</p>

<script src="https://gist.github.com/leemark/de90c78cb73673650a5a.js"></script>
<p>JavaScript code:</p>

<script src="https://gist.github.com/leemark/046103061c89cdf@7e4a.js"></script>

</div>
<footer>Example photos are property of their respective owners, all code is freely licensed
for your use.
Made especially for you by Mark Lee
aka @therealmarklee
☮ +
♥</footer>
<script src="demo/js/hammer.min.js"></script>
<script src="js/better-simple-slideshow.min.js"></script>
<script>
var opts = {

auto : {

speed : 3500,
pauseOnHover : true

1,

fullScreen : false,

swipe : true
I
makeBSS(C' .numl', opts);
var opts2 = {

auto : false,

fullScreen : true,

swipe : true
I
makeBSS(" .num2", opts2);
</script>
</body>
</html>

As you can see, the full 'kitchen sink’ of HTML web page capabilities are used in this example. The rendering
is performed internally by lronPDF using the Chromium HTML engine and v8 javascript engine from Google.
They do not need to be installed in your system, the entire package is automatically added to your project

when you use IronPDF.

3.1. Add Headers and Footers

As we have a beautiful PDF render working, we may now wish to add attractive headers and footers

Imports IronPdf
Module Modulel

Sub Main(Q)
Dim renderer = New HtmlToPdf()
renderer.PrintOptions.CssMediaType = PdfPrintOptions.PdfCssMediaType.Print
renderer.PrintOptions.PrintHtmlBackgrounds = False
renderer.PrintOptions.PaperOrientation = PdfPrintOptions.PdfPaperOrientation.Landscape
renderer.PrintOptions.RenderDelay = 150

renderer.PrintOptions.Header.CenterText = "VB.Net PDF Slideshow"
renderer.PrintOptions.Header.DrawDividerLine = True
renderer.PrintOptions.Header.FontSize = "13"

renderer.PrintOptions.Footer.RightText = "page {page} of {total-pages}"
renderer.PrintOptions.Footer.FontFamily = "Arial"
renderer.PrintOptions.Footer.FontSize = "9"

Dim document = renderer.RenderHTMLFileAsPdf("..\..\slideshow\index.html™)
document.SaveAs("Html5WithHeader.pdf™)
System.Diagnostics.Process.Start("Html5WithHeader.pdf™)

End Sub

End Module

There is support for logical headers and footers as shown. You may also add HTML based headers and

footers as described in the VB.Net PDF developer object reference online

You can download and explore the source code for this "vb.net html to pdf” project as a VB.Net Visual

Studio project

4. Create PDF w/ Dynamic Content : 2 Methods

Historically, PDF 'templating' has been an overwhelming task for Software Engineers. Stamping content into
PDF templates rarely works. This is because each case or report will contain content of varying types and

length. Fortunately, HTML is exceptionally good at handling Dynamic Data.

For this we have 2 ways forward:

1. String Templating of HTML then conversion to PDF using .NET
2. Rendering out content as an ASP.NET Web Page and then rendering the page as a PDF

4.1. Method 1 - ASP.NET - ASPX to PDF using VB.Net Web Forms

Fortunately this solution is surprisingly simple. Any flavor of .Net Web Form (including Razor) can be

rendered into a PDF document using this VB.Net code in the Page Load subroutine in the VB.Net code
behind.

The PDF document may be set with a content-disposition to display in-browser, or to act as a file download.

Private Sub Forml_Load(ByVal sender As Object, ByVal e As EventArgs)
Dim PdfOptions As PdfPrintOptions = New IronPdf.PdfPrintOptions
PdfPrintOptions.

IronPdf.AspxToPdf.RenderThisPageAsPDF(AspxToPdf.FileBehaviour.Attachment, "MyPdf.pdf",
PdfOptions)
End Sub

4.2. Method 2 - HTML to PDF with String Templating

To create dynamic PDF documents that include instance specific data, we simply create a HTML string to

match the data we wish to render as a PDF.

This is probably the largest advantage of the HTML-to-PDF solution in VB.Net - the ability to easily and

intuitively create dynamic PDF documents and reports by creating HTML 'on the fly.’

https://ironpdf.com/c%23-pdf-documentation/html/T_IronPdf_HtmlHeaderFooter.htm
https://ironpdf.com/tutorials/vb-net-pdf/downloads/VB.Net.Pdf.Tutorial.zip

The simplest version of this is the String.Format method from VB.Net

Imports IronPdf
Module Modulel

Sub Main(Q)
Dim renderer = New HtmlToPdf()

Dim Html = "Hello {0}"

String.Format(Html, "World™)

Dim document = renderer.RenderHtmlAsPdf("Html™)

document.SaveAs("HtmlTemplate.pdf™)

System.Diagnostics.Process.Start("HtmlTemplate.pdf™)
End Sub

End Module

As PDFs get more complicated, the String will get more complicated. We might consider using a String
Builder, or even a templating framework such as HandleBars.Net or Razor

https:/github.com/rexm/Handlebars.Net

5. Edit PDF Files with VB.Net

IronPDF for VB.Net also allows PDF documents to be edited, encrypted, watermarked or even turned back

into plain text:

5.1. Merging Multiple PDF Files into One Document in VB

Dim Renderer As var = New IronPdf.HtmlToPdf

Dim PDFs As var = New List(Of PdfDocument)
PDFs.Add(PdfDocument.FromFile("A.pdf"))
PDFs.Add(PdfDocument.FromFile("B.pdf"))
PDFs.Add(PdfDocument.FromFile("C.pdf™"))

Dim PDF As PdfDocument = PdfDocument.Merge(PDFs)
PDF.SaveAs("merged.pdf™)

5.2. Add a Cover Page to the PDF

PDF.PrependPdf(Renderer.RenderHtmlAsPdf("<hl>Cover Page</hl><hr>"))

5.3. Remove the last page from the PDF

PDF .RemovePage((PDF.PageCount - 1))

10

5.4. Encrypt a PDF using 128 Bit Encryption

// Save with a strong encryption password.

PDF.Password = "my.secure.password";
PDF.SaveAs("secured.pdf™)

5.5. Stamp Additional HTML Content Onto a Page in VB

Imports IronPdf
Module Modulel

Sub MainQ)
Dim Renderer As IronPdf.HtmlToPdf = New IronPdf.HtmlToPdf

Dim pdf = Renderer.RenderUrlAsPdf("https:/ /.nuget.org/packages/IronPdf™)

Dim stamp = New HtmlStamp()

"

stamp.Html = "<hZ>Completed</h2>"
stamp.Opacity = 50

stamp.Rotation = -45

stamp.Top = 10

pdf.StampHTML(stamp)

pdf.SaveAs("C:\Path\To\Stamped.pdf")
End Sub

End Module

5.6. Add Page Break to PDF Using HTML
The easiest way to do this is with HTMI and CSS

<div style='page-break-after: always;'> </div>

6. More .NET PDF Tutorials

You may also be interested in:

» The full VB.Net and C# MSDN style object reference
* A tutorial about converting ASPX to PDF for Vb.Net and C#
* An in depth tutorial about rendering HTML to PDF for Vb.Net and C#

Conclusion

In this tutorial we discovered 6 ways to achieve VB.Net to PDF results using VB.NET as our programming

language of choice.

n

https://ironpdf.com/c%23-pdf-documentation/html/N_IronPdf.htm
https://ironpdf.com/tutorials/aspx-to-pdf/
https://ironpdf.com/tutorials/html-to-pdf/

* HTML string to PDF

* Creating a PDF in VB.Net using an HTML string to define its content
* Rendering existing URLs as PDF files

- Generating PDF from HTML files

* HTML templating in VB.Net and conversion to dynamic PDFs

» Converting ASP.Net pages with live data, such as ASPX to PDF files

For each we used the popular lronPDF VB .NET library to allow us to turn HTML directly into PDF

documents within .NET projects

Tutorial Quick Access

Download this Tutorial as C# Source Code

The full free VB.NET HTML to PDF Source Code for this tutorial is available to

download as a zipped Visual Studio project file.

& Download

Explore this Tutorial on GitHub

You may also be interested in our extensive library of VB.Net PDF generation
and manipulation examples on GitHub. Exploring source code is the fastest way
to learn, and Github is the definitive way to do so online. | hope these examples

help you get to grips with PDF related functionality in your VB projects.

Creating PDFS in ASP.Net with VB.Net and C# Source »
A Simple Hello World Project to Render HTML to PDF in VB.Net using Iron PDF »

Exploring Html To PDF in-depth with VB.Net »

Download C# PDF Quickstart guide

To make developing PDFs in your .NET applications easier, we have compiled
a quick-start guide as a PDF document. This "Cheat-Sheet” provides quick
access to common functions and examples for generating and editing PDFs in
C# and VB.Net - and will save time getting started using IronPDF in your .NET

project.

& Download

12

https://ironpdf.com/tutorials/vb-net-pdf/downloads/VB.Net.Pdf.Tutorial.zip
https://github.com/iron-software/iron-pdf-example-asp.net-create-pdf
https://github.com/iron-software/iron-pdf-example-hello-world-vb.net
https://github.com/iron-software/iron-pdf-example-html-to-pdf-vb.net
https://ironpdf.com/csharp-pdf.pdf

View the object reference

Explore the Object Reference for IronPDF, outlining the details of all of

IronPDF'’s features, namespaces, classes, methods fields and enums.

View the Object Reference »

Support

Open a support ticket

with our development team.

Ask a Question

The Ci# PDF solution you've been looking for.

Documentation

View code examples
and tutorials

Get Started

Licensing

Free for development.

License from $399.

See Licenses

| P2

Try IronPDF Free

Get set up in 5 minutes.

13

https://ironpdf.com/c%23-pdf-documentation/html/N_IronPdf.htm
https://ironpdf.com/tutorials/vb-net-pdf/#helpscout-support
https://ironpdf.com/docs/
https://ironpdf.com/licensing/
https://ironpdf.com/tutorials/vb-net-pdf/#download-modal

